Er Manish Bhadoria's
 Interactions Study Circle
 Strong Foundation for a bright future

Address: Nimbalkar's Goth - 2, Near Balaji Travels Office, Kampoo, Lashkar, Gwalior Ph: 6450282, 2424758 Mob: 9229497622 Email: manish_bhadoria@yahoo.co.in

Mathematics

(Answers and Solutions to Sample Paper - II)

This is the answer/solution sheet for the Mathematics sample paper - 02 prepared by me and published on www.cbseguess.com on 03 Feb 2010.

Perma link for the question paper is: http://www.cbseguess.com/papers/paper_description.php?paper_id=2548

Answers

1. 250
2. $-\frac{4}{3}$
3. $-\frac{b}{a}$
4. $\mathrm{D}>0$
5. 50 cm
6. 5.5 cm
7. Median
8. $\frac{1}{6}$
9. 50°
10. 30°
11. -78
12. ---
13. $\frac{11}{75}$
$\frac{13}{2}$)
14. 2 and -3
Choice
15. 60 days
3, 5
16. $a=-1, b=2$
Choice
17. $\left(-\frac{7}{5}, \frac{12}{5}\right)$
Fixed charge = Rs
18. ---
10, Charge for each
19. --extra day $=$ Rs 3/day
20. $x=40$ Choice
no. of rows = 15, no.
of plants in last row
$=12$
21. 18.33 cm
22. ---
23. 12 sq. units
24. $\left(-1, \frac{7}{2}\right),(0,5),(1$,
25. $75.625 \mathrm{~m}^{2}$
26. Larger pipe: 20 h ,
Smaller pipe: 30 h
27. ---
28. ---
29. $170.8 \mathrm{~cm}^{3}$
Choice
$562500 \mathrm{~m}^{2}$
30. $f_{1}=28, f_{2}=24$

Hints / Solutions

1. $\operatorname{HCF}(x, y) \times \operatorname{LCM}(x, y)=x \times y$
$5 \times 1750=35 \times y \quad \Rightarrow \quad y=\frac{5 \times 1750}{35}=250$ Ans
2. Let $\mathrm{p}(\mathrm{x})=(k-1) \mathrm{x}^{2}+k \mathrm{x}+1$
$\because-3$ is a zero of $\mathrm{p}(\mathrm{x})$
$\therefore \mathrm{p}(-3)=0$
Or, $(k-1)(-3)^{2}+k(-3)+1=0$
Solving, $k=-\frac{4}{3}$ Ans
3. For a cubic polynomial,
$\alpha+\beta+\gamma=-\frac{b}{a} \quad \Rightarrow \quad 0+0+\gamma=-\frac{b}{a} \quad \Rightarrow \quad \gamma=-\frac{b}{a}$ Anc
4. $\mathrm{D}>0$
5. Let radius of big circle be r . Then, according to the problem $\pi r^{2}=\pi(24)^{2}+\pi(7)^{2} \quad \Rightarrow \quad r=25 \quad \Rightarrow \quad$ Diameter $=50 \mathrm{~cm}$ Ans
6. We'll make use of the fact that tangents drawn from an external point to a circle are equal in length. . So, $\mathrm{PA}=\mathrm{PB}=8 \mathrm{~cm}$ and $\mathrm{AC}=\mathrm{CQ}=2.5 \mathrm{~cm}$. $\mathrm{AP}=\mathrm{AC}+\mathrm{CP}=8 \Rightarrow \mathrm{CQ}+\mathrm{CP}=8 \Rightarrow 2.5+\mathrm{CP}=8 \Rightarrow \mathrm{CP}=5.5 \mathrm{~cm}$ Ans
7. Median
8. Favourable events are $(1,1),(2,2),(3,3),(4,4),(5,5),(6,6)$ [total 6 no.] All events are 36 in number.
$\therefore \mathrm{P}(\mathrm{E}$: same no. on both dies $)=\frac{6}{36}=\frac{1}{6}$ Ans
9. $\angle \mathrm{ABC}=90^{\circ}$ (angle in a semicircle)

In $\triangle \mathrm{ABC}, \angle \mathrm{ACB}+\angle \mathrm{ABC}+\angle \mathrm{CAB}=180^{\circ}$ (angle sum property of a triangle) $50^{\circ}+90^{\circ}+\angle \mathrm{CAB}=180^{\circ} \Rightarrow \angle \mathrm{CAB}=40^{\circ}$.
$\angle \mathrm{CAT}=90^{\circ}$ (angle between radius and tangent at the point of contact of tangent is a right angle)
$\angle \mathrm{CAT}=\angle \mathrm{CAB}+\angle \mathrm{BAT}=90^{\circ} \Rightarrow 40^{\circ}+\angle \mathrm{BAT}=90^{\circ} \Rightarrow \angle \mathrm{BAT}=50^{\circ}$ Ans
10. $\tan \theta=\frac{h}{h \sqrt{3}}=\frac{1}{\sqrt{3}}=\tan 30^{\circ}$

$$
\therefore \theta=30^{\circ} \text { Ans }
$$

11. Writing the AP in reverse order: $-100,-98,-96, \ldots \ldots$

For this, we have to find $12^{\text {th }}$ term from beginning.
$a=-100, d=2$
$a_{12}=a+11 d=-100+11(2)=-100+22=-78$ Ans
12. $\sin \theta+\cos \theta=\sqrt{ } 3 \Rightarrow(\sin \theta+\cos \theta)^{2}=3 \Rightarrow \sin ^{2} \theta+\cos ^{2} \theta+2 \sin \theta \cos \theta=3$ Or, $1+2 \sin \theta \cos \theta=3 \Rightarrow 2 \sin \theta \cos \theta=2 \Rightarrow \sin \theta \cos \theta=1 \ldots \ldots$. (i)
$\tan \theta+\cot \theta=\frac{\sin \theta}{\cos \theta}+\frac{\cos \theta}{\sin \theta}=\frac{\sin ^{2} \theta+\cos ^{2} \theta}{\sin \theta \cos \theta}=\frac{1}{\sin \theta \cos \theta}=\frac{1}{1}=1$ Proued

Or

$\frac{\cos ^{2}\left(45^{\circ}+\theta\right)+\cos ^{2}\left(45^{\circ}-\theta\right)}{\tan \left(60^{\circ}+\theta\right) \tan \left(30^{\circ}-\theta\right)}=\frac{\sin ^{2}\left[90^{\circ}-\left(45^{\circ}+\theta\right)\right]+\cos ^{2}\left(45^{\circ}-\theta\right)}{\cot \left[90^{\circ}-\left(60^{\circ}+\theta\right)\right] \tan \left(30^{\circ}-\theta\right)}$
$=\frac{\sin ^{2}\left(45^{\circ}-\theta\right)+\cos ^{2}\left(45^{\circ}-\theta\right)}{\cot \left(30^{\circ}-\theta\right) \tan \left(30^{\circ}-\theta\right)}=\frac{1}{\frac{1}{\tan \left(30^{\circ}-\theta\right)} \times \tan \left(30^{\circ}-\theta\right)}=1$ Prowed
13. In $\triangle \mathrm{ABC}$ and $\triangle \mathrm{ACD}, \angle \mathrm{ACB}=\angle \mathrm{CDA}$ (given) and $\angle \mathrm{A}=\angle \mathrm{A}$ (common). $\therefore \triangle \mathrm{ACB} \sim \triangle \mathrm{ADC}$ (AA similarity)
So, $\frac{A C}{A D}=\frac{A B}{A C} \Rightarrow \mathrm{AB}=\frac{A C^{2}}{A D}=\frac{64}{3} \mathrm{~cm}$
Now, $\mathrm{BD}=\mathrm{AB}-\mathrm{AD}=\frac{64}{3}-3=\frac{55}{3} \mathrm{~cm}$ Ans
14. Let coordinates of B and C be (x_{1}, y_{1}) and ($\mathrm{x}_{2}, \mathrm{y}_{2}$) respectively.
Then, $\frac{1+x_{1}}{2}=2$ and $\frac{-4+y_{1}}{2}=-1$
Solving, $\mathrm{x}_{1}=3, \mathrm{y}_{1}=2$

Similarly, $x_{2}=-1$ and $y_{2}=2$
$\operatorname{ar}(\triangle A B C)=1 / 2\left[x_{1}\left(y_{2}-y_{3}\right)+x_{2}\left(y_{3}-y_{1}\right)+x_{3}\left(y_{1}-y_{2}\right)\right]$

$$
=1 / 2[1(2-2)+3(2+4)-1(-4-2)]=12 \text { sq. units Ans }
$$

15. After pouring the contents of both the boxes into a third box-

Total no. slips $=75$, No. of slips of Re $1=19+45=64$, No. of slips of Rs $5=$ 6 and No. of slips of Rs $13=5$.
$P($ E: $\operatorname{Re} 1$ slip $)=\frac{64}{75} \Rightarrow P($ E: not $\operatorname{Re} 1)=1-\frac{64}{75}=\frac{11}{75}$ Ans
16. [note - steps discussed in brief only]

Since $\sqrt{3}$ and $-\sqrt{3}$ are zeroes of $p(x),(x-\sqrt{3})$ and $(x+\sqrt{3})$ are factors of $p(x)$. $\therefore(x-\sqrt{3})(x+\sqrt{3})$ is a factor of $p(x) \Rightarrow\left(x^{2}-3\right)$ is a factor of $p(x)$.
Dividing $p(x)$ by $x^{2}-3$ by long division method, we get remainder equal to zero and quotient equal to $x^{2}+x-6$. This quotient is the other factor of $\mathrm{p}(\mathrm{x})$.
Then $p(x)=\left(x^{2}-3\right)\left(x^{2}+x-6\right)$.
$x^{2}+x-6=(x+3)(x-2)$
\therefore Other factors of $\mathrm{p}(\mathrm{x})$ are -3 and 2 . Ans
17. Time $=\frac{\text { Distance }}{\text { Speed }}$

So time taken by different cyclist in completing one round-
For first cyclist, $\mathrm{t}_{1}=\frac{360}{60}=6$ days
For second cyclist, $\mathrm{t}_{2}=\frac{360}{72}=5$ days
For third cyclist, $\mathrm{t}_{3}=\frac{360}{90}=4$ days.
Finding $\operatorname{LCM}(6,5,4)$:
$6=2 \times 3$
$5=5$
$4=2^{2}$
$\therefore \operatorname{LCM}(6,5,4)=2^{2} \times 3 \times 5=60$ days Ans
18. Condition for infinite solutions:
$\frac{a_{1}}{a_{2}}=\frac{b_{1}}{b_{2}}=\frac{c_{1}}{c_{2}} \Rightarrow \frac{4}{2 a+7 b}=\frac{5}{a+8 b}=\frac{2}{2 b-a+1}$
Two equations are obtained from these.
$2 \mathrm{a}+\mathrm{b}=0 \ldots \ldots$.(i)
$7 a+6 b=5 \ldots \ldots$.(ii)
Solving these equations, $a=-1, b=2$ Ams
Let the fixed charge be Rs x (for first two days) and additional charge be Rs y (for each extra day).
Total charge for 6 days: $x+4 y=22 \ldots .$. (i)

[^0]Lashkar, Gwalior Ph: 6450282, 2424758 Mob: 9229497622

Total charge for 4 days $=x+2 y=16 \ldots .$. (ii)
Solving these equation, $x=10$ and $y=3$.
So, fixed charge $=$ Rs 10 and additional charge $=$ Rs 3 per day. Anc
19. The terms of this series are in AP. [$a=1, d=3]$

Let there be total n terms in the series. Then, $\mathrm{x}=\mathrm{n}^{\text {th }}$ term $\left(\mathrm{a}_{\mathrm{n}}\right)$
$\mathrm{x}=\mathrm{a}+(\mathrm{n}-1) \mathrm{d}=1+(\mathrm{n}-1) 3=3 \mathrm{n}-2$
Given that $\mathrm{S}_{\mathrm{n}}=287$
$\frac{n}{2}[2 \mathrm{a}+(\mathrm{n}-1) \mathrm{d}]=287 \Rightarrow \frac{n}{2}[2+(\mathrm{n}-1) 3]=287$
Or, $\frac{n}{2}[3 n-1]=287 \Rightarrow 3 n^{2}-n-574=0$
Solving this quadratic equation, $\mathrm{n}=14$ and $\mathrm{n}=-\frac{41}{3}$.
Number of terms in an AP cannot be negative (and fractional number).
$\therefore \mathrm{n}=14$.
Then, $x=3 n-2=3(14)-2=42-2=40$ Ans
Or
$40+38+36+$ \qquad .$=390$
It's an AP with $\mathrm{a}=40$ and $\mathrm{d}=-2$.
Let number of rows $=\mathrm{n}$
Then, $\mathrm{S}_{\mathrm{n}}=390 \Rightarrow \frac{n}{2}[2 \mathrm{a}+(\mathrm{n}-1) \mathrm{d}]=390 \Rightarrow \frac{n}{2}[80+(\mathrm{n}-1)(-2)]=390$
Or, $\frac{n}{2}[-2 n+82]=390 \Rightarrow n(-n+41)=390 \Rightarrow-n^{2}+41 n-390=0$
Solving, $\mathrm{n}=15$ or $\mathrm{n}=26$
If we take $n=26$, then number of plants in this row,
$\mathrm{a}_{26}=\mathrm{a}+25 \mathrm{~d}=40+25(-2)=-10$, which is impossible.
So, number of rows $=15$ Ans
Then number of plants in last (i.e. $15^{\text {th }}$)row $=a+14 d=40+14(-2)=12$ Ans
20. LHS $=\frac{1+\sec \theta-\tan \theta}{1+\sec \theta+\tan \theta}=\frac{\left(\sec ^{2} \theta-\tan ^{2} \theta\right)+\sec \theta-\tan \theta}{1+\sec \theta+\tan \theta}$
$=\frac{(\sec \theta-\tan \theta)(1+\sec \theta+\tan \theta)}{1+\sec \theta+\tan \theta}=\sec \theta-\tan \theta=\frac{1}{\cos \theta}-\frac{\sin \theta}{\cos \theta}=\frac{1-\sin \theta}{\cos \theta}=$
RHS Proued
21. Let the points which divide line segment $A B$ in four equal parts be P, Q and R.

$\dot{\mathrm{A}}$	$\dot{\mathrm{P}}$	$\dot{\mathrm{Q}}$	$\dot{\mathrm{R}}$	$\dot{\mathrm{B}}$
$(-2,2)$				$(2,8)$

Point P divides $A B$ in the ratio $1: 3$
Using section formula, coordinates of P are
$\mathrm{x}=\frac{1 \times 2+3(-2)}{1+3}=-1, \mathrm{y}=\frac{1 \times 8+3 \times 2}{1+3}=\frac{7}{2}$
Point Q is the mid-point of $A B$. Therefore coordinates of Q are-
$\mathrm{x}=\frac{-2+2}{2}=0, \mathrm{y}=\frac{2+8}{2}=5$
Point R divides AB in the ratio $3: 1$
\therefore Coordinates of R are
$\mathrm{x}=\frac{3 \times 2+1 \times(-2)}{4}=1, \mathrm{y}=\frac{3 \times 8+1 \times 2}{4}=\frac{13}{2}$
So, $\mathrm{P}\left(-1, \frac{7}{2}\right), \mathrm{Q}(0,5), \mathrm{R}\left(1, \frac{13}{2}\right)$ Anc

Or

Let A be the point $(11,-9)$ on the circumference of the circle.
Given, diameter $=10 \sqrt{ } 2$ units
Then, $\mathrm{OA}=$ radius $=5 \sqrt{ } 2$ units

By distance formula:
 point of BD.
$\frac{x+1}{2}=\frac{2-2}{2} \Rightarrow \mathrm{x}=-1$ and $\frac{y+1}{2}=\frac{3+0}{2} \Rightarrow \mathrm{y}=2$
Now, given that $\mathrm{AE}=\frac{3}{5} \mathrm{AD} \Rightarrow \mathrm{AE}=\frac{3}{5}(\mathrm{AE}+\mathrm{ED}) \Rightarrow \mathrm{AE}-\frac{3}{5} \mathrm{AE}=\frac{3}{5} \mathrm{ED}$ $\Rightarrow \frac{2}{5} \mathrm{AE}=\frac{3}{5} \mathrm{ED} \Rightarrow \frac{A E}{E D}=\frac{3}{2}$.

Then coordinates of E (by section formula) are:
Abscissa $=\frac{2(-2)+3(-1)}{3+2}=-\frac{7}{5}$ and Ordinate $=\frac{2 \times 3+3 \times 2}{5}=\frac{12}{5}$
So, point E is $\left(-\frac{7}{5}, \frac{12}{5}\right)$ Anc
23. ---
24. Lengths of tangents drawn from an external point to a circle are equal. $A Q=A B+B Q=A B+B P \ldots .$. (i)
$A R=A C+C R=A C+C P$
But $A Q=A R$
$\therefore A Q=A C+C P \ldots .$. (ii)
Adding (i) and (ii) -
$2 A Q=A B+B P+P C+A C=A B+B C+A C$
$\therefore A Q=1 / 2(A B+B C+A C)$ Prowed
25. Increase in graze area = area of bigger quadrant of circle - area of smaller quadrant
Increase $=1 / 4 \pi(11.5)^{2}-1 / 4 \pi(6)^{2}$

$$
=1 / 4 \times \frac{22}{7}(17.5 \times 5.5)=75.625 \mathrm{~m}^{2} \text { Ans }
$$

26. Let the volume of the pool be V .

Also let the larger pipe fills the pool in x hours and the smaller pipe fills it in y hours.
By larger Pipe:
In x hours volume filled $=V$
\therefore In 1 hour volume filled $=\frac{V}{x}$
\therefore In 12 hours volume filled $=\frac{12 \mathrm{~V}}{x}$
By Smaller Pipe:
In 12 hours volume filled $=\frac{12 \mathrm{~V}}{y}$
When both pipes run together volume filled in 12 hours $=\mathrm{V}$
i.e., $\frac{12 \mathrm{~V}}{x}+\frac{12 \mathrm{~V}}{y}=\mathrm{V}$

Or, $\frac{1}{x}+\frac{1}{y}=\frac{1}{12} \ldots \ldots$ (i)
According to second condition-
$\frac{4 V}{x}+\frac{9 V}{y}=\frac{V}{2}$
Or, $\frac{4}{x}+\frac{9}{y}=\frac{1}{2}$
Solving equation (i) and (ii) -
$\mathrm{x}=20$ and $\mathrm{y}=30$
Thus, larger diameter pipe takes 20 hours and smaller diameter pipe takes 30 hours to fill the pool. Ans
27. Let AB be the ladder of length l resting against wall AC. Given, $\angle \mathrm{ABC}=\alpha$. When its foot is pulled away through a distance p, its top end slides down a distance q. Now the ladder takes the position DE and $\angle \mathrm{DEC}=\beta$.
Also let $D C=x$ and $B C=y$.

In $\triangle \mathrm{ABC}, \cos \alpha=\frac{y}{l}$ and in $\triangle \mathrm{DEC}, \cos \beta=\frac{p+y}{l}=\frac{p}{l}+\frac{y}{l}=\frac{p}{l}+\cos \alpha$
So, $\cos \beta-\cos \alpha=\frac{p}{l} \Rightarrow p=l(\cos \beta-\cos \alpha) \ldots$
In $\triangle \mathrm{DEC}, \sin \beta=\frac{x}{l}$ and in $\triangle \mathrm{ABC}, \sin \alpha=\frac{q+x}{l}=\frac{q}{l}+\frac{x}{l}=\frac{q}{l}+\sin \beta$
So, $\sin \alpha-\sin \beta=\frac{q}{l} \Rightarrow q=l(\sin \alpha-\sin \beta)$.
Dividing (i) by (ii), $\frac{p}{q}=\frac{\cos \beta-\cos \alpha}{\sin \alpha-\sin \beta}$ Proued
28. BPT.

Address: Nimbalkar's Goth - 2, Near Balaji Travels Office, Kampoo
Lashkar, Gwalior Ph: 6450282, 2424758 Mob: 9229497622

EF \| $\mathrm{AB} \| \mathrm{DC}$ (given)
In $\triangle \mathrm{DAB}, \mathrm{EG} \| \mathrm{AB}$
$\therefore \frac{A E}{E D}=\frac{B G}{G D}$ (By BPT)
In $\triangle \mathrm{BDC}, \mathrm{GF} \| \mathrm{DC}$

$\therefore \frac{B G}{G D}=\frac{B F}{F C}$ (By BPT).
From (i) and (ii), $\frac{A E}{E D}=\frac{B F}{F C}$ Proved

Or

Pythagoras theorem.
A rhombus is a parallelogram in which all sides are equal and diagonals bisect each other at right angle.
$\mathrm{AB}^{2}=\mathrm{OA}^{2}+\mathrm{OB}^{2}$ (By Pythagoras theorem)

$$
=(1 / 2 \mathrm{AC})^{2}+(1 / 2 \mathrm{BD})^{2}
$$

$$
=\frac{A C^{2}}{4}+\frac{B D^{2}}{4}
$$

Or, $4 \mathrm{AB}^{2}=\mathrm{AC}^{2}+\mathrm{BD}^{2}$
Proued
29. Volume of wood in the pen stand
= volume of cuboid - volume of four conical depressions - volume of one cubical depression

$=10 \times 5 \times 4-4 \times \frac{1}{3} \times \frac{22}{7} \times(0.5)^{2}(2.1)-(3)^{3}$
$=200-2.2-27=170.8 \mathrm{~cm}^{3}$ Ans

Or

Dimensions of canal: width $=6 \mathrm{~m}$, height $=1.5 \mathrm{~m}$
Speed of water in the canal $=10 \mathrm{~km} / \mathrm{h}$
Distance covered by water in the canal in $30 \mathrm{~min}(=1 / 2$ hour $)$
Distance $=$ speed \times time

$$
=10 \mathrm{~km} / \mathrm{h} \times 1 / 2 \mathrm{~h}=5 \mathrm{~km}=5000 \mathrm{~m}
$$

\therefore Volume of water passed through the canal in 30 min
$=$ length \times breadth \times height
$=5000 \times 6 \times 1.5=45,000 \mathrm{~m}^{3}$

Height of water required in field $=8 \mathrm{~cm}=0.08 \mathrm{~m}$
Volume of water collected in field = volume of water passed through canal
\therefore Area irrigated \times height $=45,000$
Area $=\frac{45000}{0.08}=562500 \mathrm{~m}^{2}$ Ans
30.

Class	Class Mark $\left(x_{i}\right)$	Frequency ($\left.f_{\boldsymbol{i}}\right)$	$\mathrm{f}_{\mathbf{i}} \mathrm{X}_{\mathbf{i}}$
$0-20$	10	17	170
$20-40$	30	f_{1}	$30 \mathrm{f}_{1}$
$40-60$	50	32	1600
$60-80$	70	f_{2}	$70 \mathrm{f}_{2}$
$80-100$	90	19	1710
Total		$\sum \mathrm{f}_{\mathrm{i}}=68+\mathrm{f}_{1}+\mathrm{f}_{2}$	$\sum \mathrm{f}_{\mathrm{i}} \mathrm{x}_{\mathrm{i}}=3480+30 \mathrm{f}_{1}+70 \mathrm{f}_{2}$

Given, $\sum \mathrm{f}_{\mathrm{i}}=120$
$\therefore 68+\mathrm{f}_{1}+\mathrm{f}_{2}=120 \Rightarrow \mathrm{f}_{1}+\mathrm{f}_{2}=52$.
Also given, mean $=50$
$\bar{X}=\frac{\sum f_{i} x_{i}}{\sum f_{i}}$
$50=\frac{3480+30 f_{1}+70 f_{2}}{120}$
On simplifying, $3 \mathrm{f}_{1}+7 \mathrm{f}_{2}=252$.

Solving eqn. (i) and (ii), $\mathrm{f}_{1}=28$ and $\mathrm{f}_{2}=24$ Anc

Address: Nimbalkar's Goth - 2, Near Balaji Travels Office, Kampoo
Lashkar, Gwalior Ph: 6450282, 2424758 Mob: 9229497622

[^0]: Address: Nimbalkar's Goth - 2, Near Balaji Travels Office, Kampoo,

