nteractions

Study Circle

Er Manish Bhadoria's

Strong Foundation for a bright future

Address: Nimbalkar's Goth – 2, Near Balaji

Travels Office, Kampoo, Lashkar, Gwalior

Ph: 6450282, 2424758 Mob: 92294 97622

Email: manish bhadoria@yahoo.co.in

Hints / Solutions

1. HCF (x, y) × LCM(x, y) = x × y

$$5 \times 1750 = 35 \times y \implies y = \frac{5 \times 1750}{35} = 250$$
 Ans

- **2.** Let $p(x) = (k-1)x^2 + kx + 1$ $\therefore -3$ is a zero of p(x) $\therefore p(-3) = 0$ Or, $(k-1)(-3)^2 + k(-3) + 1 = 0$ Solving, $k = -\frac{4}{3}$ Ans
- 3. For a cubic polynomial, $\alpha + \beta + \gamma = -\frac{b}{a} \implies 0 + 0 + \gamma = -\frac{b}{a} \implies \gamma = -\frac{b}{a}$
- **4.** D > 0
- 5. Let radius of big circle be r. Then, according to the problem $\pi r^2 = \pi (24)^2 + \pi (7)^2 \implies r = 25 \implies \text{Diameter} = 50 \text{ cm } \text{Aus}$
- 6. We'll make use of the fact that tangents drawn from an external point to a circle are equal in length. . So, PA = PB = 8 cm and AC = CQ = 2.5 cm. AP = AC + CP = 8 \Rightarrow CQ + CP = 8 \Rightarrow 2.5 + CP = 8 \Rightarrow CP = 5.5 cm Aus
- 7. Median
- **8.** Favourable events are (1, 1), (2, 2), (3, 3), (4, 4), (5, 5), (6, 6) [total 6 no.] All events are 36 in number.

 \therefore P(E: same no. on both dies) = $\frac{6}{36} = \frac{1}{6}$ Aus

9. ∠ABC = 90° (angle in a semicircle) In ΔABC, ∠ACB + ∠ABC + ∠CAB = 180° (angle sum property of a triangle) 50° + 90° + ∠CAB = 180° ⇒ ∠CAB = 40°. ∠CAT = 90° (angle between radius and tangent at the point of contact of

tangent is a right angle) $\angle CAT = \angle CAB + \angle BAT = 90^\circ \Rightarrow 40^\circ + \angle BAT = 90^\circ \Rightarrow \angle BAT = 50^\circ$ Aus

This is the answer/solution sheet for the Mathematics sample paper – 02 prepared by me and published on <u>www.cbseguess.com</u> on 03 Feb 2010.					
Perma link for the question paper is: http://www.cbseguess.com/papers/paper_description.php?paper_id=2548					
Answers					

Mathematics

(Answers and Solutions to Sample Paper - II)

	74150015					
1.	250	15.	$\frac{11}{75}$		$\frac{13}{2}$)	
2.	$-\frac{4}{3}$		75 2 and – 3		2 ' Choice	
3.	$-\frac{b}{a}$		60 days a = - 1, b = 2	~~	3, 5 , 7 12	
4.	D > 0		Choice	22.	$(-\frac{7}{5},\frac{12}{5})$	
5.	50 cm		Fixed charge = Rs	23.		
6.	5.5 cm		10, Charge for each	24.		
7.	Median		extra day = Rs	25.	$75.625 m^2$	
8.	$\frac{1}{6}$	19.	3/day x = 40	26.	Larger pipe: 20 h, Smaller pipe: 30 h	
9.	50°		Choice	27.		
10.	30°		no. of rows = 15, no.	28.		
11.	- 78		of plants in last row	29.	170.8 cm ³	
12.			= 12		Choice	
13.	18.33 cm	20.			562500 m ²	
14.	12 sq. units	21.	(-1, $\frac{7}{2}$), (0, 5), (1,	30.	$f_1 = 28, f_2 = 24$	

Er Manish Bhadoria's Interactions Study Circle

10th CBSE Mathematics

10.
$$\tan \theta = \frac{h}{h\sqrt{3}} = \frac{1}{\sqrt{3}} = \tan 30^{\circ}$$

 $\therefore \theta = 30^{\circ}$ Ans
 h°

- 11. Writing the AP in reverse order: -100, -98, -96,
 For this, we have to find 12th term from beginning.
 a = -100, d = 2
 a₁₂ = a + 11d = -100 + 11(2) = -100 + 22 = -78 *Aus*
- 12. $\sin \theta + \cos \theta = \sqrt{3} \Rightarrow (\sin \theta + \cos \theta)^2 = 3 \Rightarrow \sin^2 \theta + \cos^2 \theta + 2 \sin \theta \cos \theta = 3$ $Or, 1 + 2 \sin \theta \cos \theta = 3 \Rightarrow 2 \sin \theta \cos \theta = 2 \Rightarrow \sin \theta \cos \theta = 1 \dots (i)$ $\tan \theta + \cot \theta = \frac{\sin \theta}{\cos \theta} + \frac{\cos \theta}{\sin \theta} = \frac{\sin^2 \theta + \cos^2 \theta}{\sin \theta \cos \theta} = \frac{1}{\sin \theta \cos \theta} = \frac{1}{1} = 1$ ProvedOr $\frac{\cos^2(45^\circ + \theta) + \cos^2(45^\circ \theta)}{\tan(60^\circ + \theta) \tan(30^\circ \theta)} = \frac{\sin^2[90^\circ (45^\circ + \theta)] + \cos^2(45^\circ \theta)}{\cot[90^\circ (60^\circ + \theta)]\tan(30^\circ \theta)}$ $= \frac{\sin^2(45^\circ \theta) + \cos^2(45^\circ \theta)}{\cot(30^\circ \theta) \tan(30^\circ \theta)} = \frac{1}{\frac{1}{\tan(30^\circ \theta)} \times \tan(30^\circ \theta)} = 1$ Proved
- **13.** In $\triangle ABC$ and $\triangle ACD$, $\angle ACB = \angle CDA$ (given) and $\angle A = \angle A$ (common). $\therefore \triangle ACB \sim \triangle ADC$ (AA similarity)

So,
$$\frac{AC}{AD} = \frac{AB}{AC} \implies AB = \frac{AC^2}{AD} = \frac{64}{3} \text{ cm}$$

Now, BD = AB - AD = $\frac{64}{3} - 3 = \frac{55}{3} \text{ cm}$ And

14. Let coordinates of B and C be (x_1, y_1) and (x_2, y_2) respectively. Then, $\frac{1+x_1}{2} = 2$ and $\frac{-4+y_1}{2} = -1$ Solving, $x_1 = 3$, $y_1 = 2$ Similarly, $x_2 = -1$ and $y_2 = 2$ $ar(\Delta ABC) = \frac{1}{2} [x_1(y_2 - y_3) + x_2(y_3 - y_1) + x_3(y_1 - y_2)]$ $= \frac{1}{2} [1(2-2) + 3(2+4) - 1(-4-2)] = 12$ sq. units Ans

> <u>Address:</u> Nimbalkar's Goth – 2, Near Balaji Travels Office, Kampoo, Lashkar, Gwalior Ph: 6450282, 2424758 Mob; 92294 97622

Er Manish Bhadoria's Interactions Study Circle

15. After pouring the contents of both the boxes into a third box-Total no. slips = 75, No. of slips of Re 1 = 19 + 45 = 64, No. of slips of Rs 5 = 6 and No. of slips of Rs 13 = 5.

$$P(E: \text{Re 1 slip}) = \frac{64}{75} \implies P(E: \text{not Re 1}) = 1 - \frac{64}{75} = \frac{11}{75}$$

16. [note – steps discussed in brief only]

Since $\sqrt{3}$ and $-\sqrt{3}$ are zeroes of p(x), $(x - \sqrt{3})$ and $(x + \sqrt{3})$ are factors of p(x). $\therefore (x - \sqrt{3})(x + \sqrt{3})$ is a factor of $p(x) \Rightarrow (x^2 - 3)$ is a factor of p(x).

Dividing p(x) by $x^2 - 3$ by long division method, we get remainder equal to zero and quotient equal to $x^2 + x - 6$. This quotient is the other factor of p(x).

Then $p(x) = (x^2 - 3)(x^2 + x - 6)$.

- $x^2 + x 6 = (x + 3)(x 2)$
- \therefore Other factors of p(x) are -3 and 2. *Aus*

17. Time =
$$\frac{\text{Distance}}{\text{Speed}}$$
For third cyclist, $t_3 = \frac{360}{90} = 4$ So time taken by different cyclist in
completing one round-days.For first cyclist, $t_1 = \frac{360}{60} = 6$ daysFinding LCM(6, 5, 4):For second cyclist, $t_2 = \frac{360}{72} = 5$ days $4 = 2^2$ \therefore LCM(6, 5, 4) = $2^2 \times 3 \times 5 = 60$ days.

18. Condition for infinite solutions:

 $\frac{a_1}{a_2} = \frac{b_1}{b_2} = \frac{c_1}{c_2} \implies \frac{4}{2a+7b} = \frac{5}{a+8b} = \frac{2}{2b-a+1}$ Two equations are obtained from these. 2a + b = 0.....(i)7a + 6b = 5....(ii)Solving these equations, a = -1, b = 2 And

Let the fixed charge be Rs x (for first two days) and additional charge be Rs y (for each extra day). Total charge for 6 days: x + 4y = 22.....(i)

10th CBSE Mathematics

Total charge for 4 days = x + 2y = 16.....(ii) Solving these equation, x = 10 and y = 3. So, fixed charge = Rs 10 and additional charge = Rs 3 per day. *Ans*

19. The terms of this series are in AP. [a = 1, d = 3] Let there be total *n* terms in the series. Then, $x = n^{th}$ term (a_n) x = a + (n - 1)d = 1 + (n - 1)3 = 3n - 2Given that S_n = 287

$$\frac{n}{2} [2a + (n-1)d] = 287 \implies \frac{n}{2} [2 + (n-1)3] = 287$$

Or, $\frac{n}{2} [3n-1] = 287 \implies 3n^2 - n - 574 = 0$

Solving this quadratic equation, n = 14 and $n = -\frac{41}{3}$.

Number of terms in an AP cannot be negative (and fractional number).

 \therefore n = 14. Then, x = 3n - 2 = 3(14) - 2 = 42 - 2 = 40 Aus

40 + 38 + 36 + = 390 It's an AP with a = 40 and d = -2. Let number of rows = n

Then, $S_n = 390 \Rightarrow \frac{n}{2} [2a + (n - 1)d] = 390 \Rightarrow \frac{n}{2} [80 + (n - 1)(-2)] = 390$ Or, $\frac{n}{2} [-2n + 82] = 390 \Rightarrow n(-n + 41) = 390 \Rightarrow -n^2 + 41n - 390 = 0$ Solving, n = 15 or n = 26If we take n = 26, then number of plants in this row, $a_{26} = a + 25d = 40 + 25(-2) = -10$, which is impossible. So, number of rows = 15 *Aus* Then number of plants in last (i.e. 15th)row = a + 14d = 40 + 14(-2) = 12 *Aus*

20. LHS = $\frac{1 + \sec\theta - \tan\theta}{1 + \sec\theta + \tan\theta} = \frac{(\sec^2\theta - \tan^2\theta) + \sec\theta - \tan\theta}{1 + \sec\theta + \tan\theta}$ = $\frac{(\sec\theta - \tan\theta)(1 + \sec\theta + \tan\theta)}{1 + \sec\theta + \tan\theta} = \sec\theta - \tan\theta = \frac{1}{\cos\theta} - \frac{\sin\theta}{\cos\theta} = \frac{1 - \sin\theta}{\cos\theta} = \frac{1 - \sin\theta}{\cos\theta}$ RHS *Proved* **21.** Let the points which divide line segment AB in four equal parts be P, O and R. P Q R B (-2, 2)(2, 8)Point P divides AB in the ratio 1:3 Using section formula, coordinates of P are $x = \frac{1 \times 2 + 3(-2)}{1 + 2} = -1, y = \frac{1 \times 8 + 3 \times 2}{1 + 3} = \frac{7}{2}$ Point Q is the mid-point of AB. Therefore coordinates of Q are $x = \frac{-2+2}{2} = 0, y = \frac{2+8}{2} = 5$ Point R divides AB in the ratio 3 : 1 : Coordinates of R are $x = \frac{3 \times 2 + 1 \times (-2)}{4} = 1, y = \frac{3 \times 8 + 1 \times 2}{4} = \frac{13}{2}$ So, P(-1, $\frac{7}{2}$), Q(0, 5), R(1, $\frac{13}{2}$) Aus Let A be the point (11, -9) on the circumference of the circle. 0<u>. 5√</u>2 A (11, -9) Given, diameter = $10\sqrt{2}$ units (2a, a-7) Then, OA = radius = $5\sqrt{2}$ units By distance formula: $OA = \sqrt{(2a-11)^2 + (a+2)^2} = 5\sqrt{2}$ Solving, a = 5 or a = 3 *Aus* C(2, 0) D(x, y)**22.** Let coordinates of point D be (x, y). In a parallelogram, diagonals bisect each other. : mid-point of AC is same as mid-A(-2, 3) point of BD. B(1, 1) $\frac{x+1}{2} = \frac{2-2}{2} \implies x = -1 \text{ and } \frac{y+1}{2} = \frac{3+0}{2} \implies y = 2$ Now, given that $AE = \frac{3}{5}$ $AD \Rightarrow AE = \frac{3}{5} (AE + ED) \Rightarrow AE - \frac{3}{5} AE = \frac{3}{5} ED$ $\Rightarrow \frac{2}{5} AE = \frac{3}{5} ED \Rightarrow \frac{AE}{ED} = \frac{3}{2}.$

10th CBSE Mathematics

Then coordinates of E (by section formula) are:

Abscissa =
$$\frac{2(-2)+3(-1)}{3+2} = -\frac{7}{5}$$
 and Ordinate = $\frac{2 \times 3 + 3 \times 2}{5} = \frac{12}{5}$
So, point E is $(-\frac{7}{5}, \frac{12}{5})$ And

23. ---

- 24. Lengths of tangents drawn from an external point to a circle are equal. AQ = AB + BQ = AB + BP.....(i) AR = AC + CR = AC + CP But AQ = AR
 ∴ AQ = AC + CP.....(ii) Adding (i) and (ii) 2 AQ = AB + BP + PC + AC = AB + BC + AC
 ∴ AQ = ½(AB + BC + AC) *Proved*
- 25. Increase in graze area = area of bigger quadrant of circle area of smaller quadrant Increase = $\frac{1}{4} \pi (11.5)^2 - \frac{1}{4} \pi (6)^2$ = $\frac{1}{4} \times \frac{22}{7} (17.5 \times 5.5) = 75.625 \text{ m}^2$ And

26. Let the volume of the pool be V.

Also let the larger pipe fills the pool in *x* hours and the smaller pipe fills it in *y* hours.

By larger Pipe: In x hours volume filled = V \therefore In 1 hour volume filled = $\frac{V}{x}$ \therefore In 12 hours volume filled = $\frac{12V}{x}$ By Smaller Pipe: In 12 hours volume filled = $\frac{12V}{y}$ When both pipes run together volume filled in 12 hours = V i.e., $\frac{12V}{x} + \frac{12V}{y} = V$

Or,
$$\frac{1}{x} + \frac{1}{y} = \frac{1}{12}$$
.....(i)

According to second condition-

$$\frac{4V}{x} + \frac{9V}{y} = \frac{V}{2}$$

Or, $\frac{4}{x} + \frac{9}{y} = \frac{1}{2}$(ii)

Solving equation (i) and (ii) -

$$x = 20$$
 and $y = 30$

Thus, larger diameter pipe takes 20 hours and smaller diameter pipe takes 30 hours to fill the pool. *Ana*

27. Let AB be the ladder of length *l* resting against wall AC. Given, $\angle ABC = \alpha$. When its foot is pulled away through a distance *p*, its top end slides down a distance *q*. Now the ladder takes the position DE and $\angle DEC = \beta$. Also let DC = x and BC = y.

$$\begin{vmatrix} \mathbf{q} & \mathbf{p} & \mathbf{q} & \mathbf{q} \\ \text{In } \Delta \text{ABC, } \cos \alpha = \frac{y}{l} \text{ and in } \Delta \text{DEC, } \cos \beta = \frac{p+y}{l} = \frac{p}{l} + \frac{y}{l} = \frac{p}{l} + \cos \alpha \\ \text{So, } \cos \beta - \cos \alpha = \frac{p}{l} \Rightarrow p = l(\cos \beta - \cos \alpha).....(i) \\ \text{In } \Delta \text{DEC, } \sin \beta = \frac{x}{l} \text{ and in } \Delta \text{ABC, } \sin \alpha = \frac{q+x}{l} = \frac{q}{l} + \frac{x}{l} = \frac{q}{l} + \sin \beta \\ \text{So, } \sin \alpha - \sin \beta = \frac{q}{l} \Rightarrow q = l(\sin \alpha - \sin \beta).....(ii) \\ \text{Dividing (i) by (ii), } \frac{p}{q} = \frac{\cos \beta - \cos \alpha}{\sin \alpha - \sin \beta} \text{ Proved}$$

28. BPT.

10th CBSE Mathematics

G

А

10 cm

С

B

Pythagoras theorem.

A rhombus is a parallelogram in which all sides are equal and diagonals bisect each other at right angle.

outer at right angle. $AB^{2} = OA^{2} + OB^{2} (By Pythagoras theorem)$ $= (\frac{1}{2} AC)^{2} + (\frac{1}{2} BD)^{2}$ $= \frac{AC^{2}}{4} + \frac{BD^{2}}{4}$ Or, 4 AB² = AC² + BD² *Proved*

29. Volume of wood in the pen stand= volume of cuboid – volume of four conical depressions – volume of one cubical depression

$$= 10 \times 5 \times 4 - 4 \times \frac{1}{3} \times \frac{22}{7} \times (0.5)^2 (2.1) - (3)^3$$
$$= 200 - 2.2 - 27 = 170.8 \text{ cm}^3 \text{ Aus}$$

Dimensions of canal: width = 6 m, height = 1.5 m Speed of water in the canal = 10 km/h

Distance covered by water in the canal in 30 min (= $\frac{1}{2}$ hour)

Distance = speed × time

= $10 \text{ km/h} \times \frac{1}{2} \text{ h} = 5 \text{ km} = 5000 \text{ m}$

 \therefore Volume of water passed through the canal in 30 min

= length × breadth × height

= 5000 × 6 × 1.5 = 45,000 m³

Height of water required in field = 8 cm = 0.08 m

Volume of water collected in field = volume of water passed through canal \therefore Area irrigated × height = 45,000

Area = $\frac{45000}{0.08}$ = 562500 m² Aus

30.

Class	Class	Frequency (fi)	fixi	
	Mark (xi)			
0-20	10	17	170	
20-40	30	f_1	30 f1	
40-60	50	32	1600	
60-80	70	f2	70 f2	
80-100	90	19	1710	
Total		$\sum f_i = 68 + f_1 + f_2$	$\sum f_i x_i = 3480 + 30f_1 + 70f_2$	

 $\begin{array}{ll} \mbox{Given, } \sum & f_i = 120 \\ \hfill \therefore \ 68 + f_1 + f_2 = 120 \ \Rightarrow \ f_1 + f_2 = 52.....(i) \end{array}$

Also given, mean = 50

$$\overline{X} = \frac{\sum f_i x_i}{\sum f_i}$$

$$50 = \frac{3480 + 30f_1 + 70f_2}{120}$$

On simplifying, 3 f_1 + 7 f_2 = 252.....(ii)

Solving eqn. (i) and (ii), $f_1 = 28$ and $f_2 = 24$ *Aus*

<u>Address:</u> Nimbalkar's Goth – 2, Near Balaji Travels Office, Kampoo, Lashkar, Gwalior Ph: 6450282, 2424758 Mob: 92294 97622

cm

5 cm